Refine Your Search

Topic

Author

Search Results

Technical Paper

Toyota's New Six-Speed Automatic Transmission AB60E for RWD Vehicles

2007-04-16
2007-01-1098
Toyota Motor Corporation has developed a new six-speed automatic transmission AB60E for longitudinal front engine rear wheel drive (RWD) vehicles. This transmission development was aimed at an improvement of power performance and fuel economy, while achieving a lightweight, compact package and a high torque capacity. In order to achieve this target, a high-capacity ultra-flat torque converter, a highly-rigid transmission case, and an ATF warmer with a valve to switch ATF circuits to an air-cooled ATF cooler have been newly developed. Moreover, a new transmission mode control logic “TOW / HAUL” has been developed to improve power performance and driveability during trailer towing. This automatic transmission has adopted the same gear train and hydraulic control system as the conventional six-speed automatic transmission A760E. This paper describes the structure, major features and performance of the transmission in detail.
Technical Paper

Toyota's U340E Four-speed Automatic Transaxle

2000-03-06
2000-01-1147
TOYOTA has designed a new family of automatic transaxles named the “Super ECT”. These are the next generation of automatic transaxles (AT), for FWD passenger cars. The aim of this development was compactness, lightness, and improvements in fuel economy and shift quality. There are several kinds of transaxles included in this group to match each of the FWD passenger cars and engines. The “U340E,” a four-speed automatic transaxle, has been developed as one member of this family. This is one of the most compact and light AT in its class, and has greatly contributed to the fuel economy of vehicles. This paper will give an overview of the “Super ECT” and the major features and performance of the U340E.
Technical Paper

Toyota's World First 8-Speed Automatic Transmission for Passenger Cars

2007-04-16
2007-01-1101
TOYOTA has developed the world's first eight-speed automatic transmission (AA80E) for front-engine, rear-drive passenger cars. The AA80E developed for high-torque engines raises the level of power performance and fuel efficiency. To meet the size requirements needed for mounting in a passenger car application, an 8-speed geartrain, torque converter, transmission case and hydraulic control device were all newly-developed. Furthermore, the AA80E has benefited from technical developments to achieve an extremely high level of quietness and shifting performance. In this paper, the details of the AA80E are introduced.
Technical Paper

Validation Test Result Analysis of Plug-in Hybrid Vehicle

2013-04-08
2013-01-1464
In recent years, many various energy sources have been investigated as replacements for traditional automotive fossil fuels to help reduce CO2 emissions, respond to instabilities in the supply of fossil fuels, and reduce emissions of air pollutants in urban areas. Toyota Motor Corporation considers the plug-in hybrid vehicle (PHV), which can efficiently use electricity supplied from infrastructure, to be the most practical current solution to these issues. For this reason, Toyota began sales of the Prius Plug-in Hybrid in 2012 in the U.S., Europe and Japan. This is the first PHV to be mass-produced by Toyota Motor Corporation. Prior to this, in December 2009, Toyota sold 650 PHVs through lease programs for validation testing in the U.S., Europe and Japan. Additional 30 PHVs were introduced in China in March 2011 for the same objective.
Technical Paper

Vehicle Dynamics Innovation with In-Wheel Motor

2011-05-17
2011-39-7204
In-wheel motors (IWM) will be a key technology that contributes to the popularization of electric vehicles. Combining electric drive with IWM enables both good vehicle dynamics and a roomy interior. In addition, the responsiveness of IWM is also capable of raising dynamic control performance to an even higher level. IWM enable vertical body motion control as well as direct yaw control, electric skid control, and traction control. This means that IWM can replace most control actuators used in a vehicle chassis. The most important technology for IWM is to enable the motor to coexist with the brake and the suspension arms inside the wheel. The IWM drive unit described in this paper can be installed with a front double wishbone suspension, the most difficult configuration.
Technical Paper

Vehicle Transient Response Based on Human Sensitivity

2008-04-14
2008-01-0597
Grip feeling is an important facet in vehicle dynamics evaluation from a driver satisfaction and enjoyment standpoint. To improve grip feeling, we analyzed the subjective comments from test driver's about grip feeling and an evaluated human sensitivity to lateral motion. As a result, we found that drivers evaluate transient grip feeling according to the magnitude of lateral jerk. Next, we analyzed what vehicle parameters affect lateral jerk by using theoretical equations. As a result, we found that cornering power is an important parameter, especially the cornering power of rear tires as they can be create larger lateral jerk than can front tires.
Technical Paper

Visibility Requirements for Automobile CRT Displays - Color, Contrast and Luminance

1988-02-01
880218
Display devices are required to have some fundamental functions which are brightness & gradation, colorfullness, resolution & sharpness, response time, and suitable size of the picture. Since the CRT (Cathode Ray Tube) is superior to the other display devices in these requirements, it can offer much information efficiently and effectively. Their visibility should not be evaluated only on the basis of some standards for office automation systems. From the point of view of human factors, visibility investigations of the CRTs for automobiles are examined. In this paper the relationship between the chromaticity difference and the luminance contrast for drivers to read the picture easily, and the luminance of the background in the CRTs for drivers not to be dazzled in the nighttime driving are clarified.
Technical Paper

Waste Heat Recovery of Passenger Car Using a Combination of Rankine Bottoming Cycle and Evaporative Engine Cooling System

1993-03-01
930880
Rankine bottoming system, which operates on waste heat of engine cooling, has been developped to improve the fuel economy of a passenger car. Evaporative engine cooling system is utilized to obtain high thermal efficiency and simplicity of the Rankine bottoming system. The bottoming system uses HCFC123 as a working fluid, and scroll expander as a power conversion unit. The results indicate that energy recovery, which depends on the ambient temperature, is almost 3 percent of engine output power at ambient temperature of 25°C.
X